

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Asnee Pochanart		Page 1
сс	Ed Mayuga, Barry Biswanger		
Subject	GWWD / Aqueduct Crossing Foundation of Permanent Aque	educt Bridging Structu	ıre
From	Omer Eissa		
Date	April 11, 2011	Project Number	60196984 (403.19)

1. Introduction

City of Winnipeg is planning the construction of a new bridging structure at the GWWD track / Aqueduct crossing. The site is located to the west of PR207/Aqueduct crossing in the vicinity of Deacon WTP. This memorandum discusses the subsurface conditions at the site and the feasible foundation alternatives. The discussions and the recommendations provided in this memorandum are based on existing information compiled from geotechnical investigations previously conducted by AECOM (then UMA I AECOM) in the period between August 2005 and January 2006. No dedicated field investigation was undertaken for this project.

2. Subsurface Conditions (Based on Previous Investigations)

Five test holes (TH05-55 to 05-59) were drilled at locations in the vicinity of the proposed aqueduct crossing over the period between August 12th to 22nd, 2005 and January 18th, 2006. The approximate location of the test holes is shown on Figure 01. Table 01 provides additional information related to the test holes including the depth of the exploration. Three test holes (TH05-55 to 05-57) were drilled by Maple Leaf Drilling Ltd. using a truck mounted DR-150 rig equipped with 125 mm diameter solid stem augers. Two test holes (TH05-58 and 05-59) were drilled by Paddock Drilling Ltd. using an Acker SS drilling rig equipped with 125 mm solid stem augers. Three of the test holes (TH05-55, TH05-58 and TH05-59) were advanced to auger refusal in the till unit and two test holes (TH05-56 and TH05-57) were terminated at 3.0 m.

Test Hole #	Diameter (mm)	Termination Depth (m)	Termination Elevation (m)	Termination Condition
TH05-55	125	21.8	215.8	Refusal
TH05-56	125	3.0	233.7	Pre-determined
TH05-57	125	3.0	234.1	Pre-determined
TH05-58	125	20.7	216.9	Refusal
TH10-59	125	19.5	218.1	Refusal

Table 01: S	ummary	of the	2005/	2006	Test	Holes
-------------	--------	--------	-------	------	------	-------

The general soil profile in descending order is:

- Fill
- Glaciolacustrine Clay
- Till

These soil units are described separately as follows:

2.1.1 Fill

A layer of fill was encountered in all test holes and extends from the ground surface to a depth ranging from 1.5 (TH05-56) to 2.7 m (TH05-58). Clay fill was encountered in TH05-55, TH05-58 and TH05-59. Granular fill (gravel road structure) was encountered in TH05-55 and TH05-56.

2.1.2 Clay

Glaciolacustrine clay was encountered beneath the fill and extends to the depth of exploration in the shallow test holes and to a depth range from 17.4 to 18.5 meters in the deep test holes.

Generally, the clay is silty, moist, soft to firm, and of high plasticity. The moisture contents ranged from 30 to 55 percent.

2.1.3 Till

Till was encountered in all three deep test holes (TH05-55, TH05-58 and TH05-59) that were advanced to power auger refusal. The till was encountered at depths ranging from 17.4 to 18.5 m below the ground surface. The till is generally a heterogenous mix of sand, gravel, cobbles and boulders in a silt matrix. The upper 0.8 to 1.5 m of the till was very soft. Power auger refusal was encountered in the till at depths ranging from 19.5 to 21.8 meters or corresponding elevations 218.1 to 215.8 meters.

3. Foundation Recommendations

3.1 Driven Prestressed Precast Concrete (PPC) Piles

Driven PPC piles can be used to support the proposed structure. PPC piles should be driven to practical refusal into the dense glacial till or on the underlying bedrock. Provided that a hammer with a rated energy of at least 40 kJ per blow is utilized, the piles may be assigned the conventional capacities shown in Table 02. These pile capacities are based on a series of studies and load tests and have been successfully used in the Winnipeg area for several decades.

Pile Diameter (mm)	Maximum Allowable Capacity (kN)	Final Refusal (blows/25 mm)
300	450	6
350	625	8
400	800	12

Table 02: Driven PPC Piles – Allowable Pile Capacity

Final set criteria for driven PPC piles shall be taken as three consecutive sets as defined in the table above. PPC piles driven to set into the till will develop the majority of their capacity from toe resistance, and therefore, no reduction in pile capacity is necessary for reasons related to group action. The design capacity of a pile group can be taken as the number of piles in the group multiplied by the allowable capacity per pile.

Based on past experience, the depth to auger refusal is roughly corresponding to the depth at which the pile could set (pile tip), however an allowance for natural soil variability should be considered in determining the required pile length. The local manufacturers can provide pile lengths up to 22 m without splices which is close to the depth of auger refusal encountered in the test holes drilled in the vicinity of this site (i.e., 21.8 m). It is the local practice in Winnipeg area that the Contractor, based on experience and available geotechnical information, will determine and supply the required pile lengths to achieve the specified pile capacity/set.

It is prudent that the following measures are taken to protect the existing aqueduct form the potential adverse effect of pile driving operations:

- 1. The piles should be driven at a minimum lateral offset of 4.0 meters from the centreline of the aqueduct.
- 2. The piles should be pre-bored to a depth of 1.5 meters below the invert elevation of the existing aqueduct.
- 3. Use low energy level or low hammer stroke during the early stage of pile driving.

Further design and construction recommendations for driven PPC piles are summarized below:

- The weight of the embedded portion of the pile may be neglected in the design.
- The above allowable values pertain to soil resistance only. The pile cross sections must be designed to withstand the design loads and the driving forces during installation.
- Pile spacing should not be less than 2.5 pile diameters, measured center to center.
- Pre-boring may be use at all driven pile locations, to protect the aqueduct, enhance pile plumbness and alignment, and to reduce the effects of pile heave during driving of adjacent piles. The diameter of the auger should not exceed the nominal diameter of the pre-cast concrete pile.
- All piles should be driven continuously to the depth of refusal, once driving is initiated.
- All piles driven within 5 pile diameters should be monitored for heave and where heave is observed, the piles should be re-driven. Piles that are re-driven should be driven to the refusal criteria outlined above (i.e. re-drive piles for one full set).
- Any piles that are damaged, excessively out of plumb or refuse prematurely due to encountering boulders in the till may need to be replaced, pending a review of their load carrying capacity and expected settlement by the structural and the geotechnical engineer.
- Where a steel follower is used to install the piles below ground surface, the set criteria may need to be adjusted to account for additional energy losses through the use of the follower. Adjustments to the set criteria should be determined by a qualified geotechnical engineer based on the site conditions, installation procedure and pile driving equipment.
- The driving of all piles should be documented by competent and knowledgeable geotechnical personnel.

- PDA testing is recommended to confirm efficiency of driving system, assess driving stresses and evaluate pile capacity.
- Vibration monitoring may be required to assess driving induced vibration levels and assess
 potential impact on the existing facilities.

3.2 Cast in Place Concrete Friction Piles

Cast-in-place friction piles can be used to support lightly loaded structures. However, due to the encountered subsurface conditions, these piles may be impractical and not cost-effective at this site. Limited skin friction resistance are expected from the native clay due to the low undrained shear strength. Table 03 provides values for the allowable unit skin friction resistance. No skin friction resistance shall be accounted for the length of the pile within the fill or from the top 2.5 m of the pile shaft for the potential volume change of soil and frost action. Selection of the pile length should recognize the depth to till and the requirements to control groundwater and to protect against the potential of hydraulic fracture due to artesian condition in the till. The pile tip should be terminated at least 2 m above the clay / till contact (i.e., pile tip not deeper than Elv. 222.5 m).

Table 03: Cast-in-Place Piles – Allowable Unit Skin Friction Resistance

Zone (Elev. in m)	Allowable Unit Skin Friction
	(kPa)
Above 232.5	0
232.5 - 222.5	15

Further design and construction recommendations for cast-in-place concrete frictions piles are summarized below:

- The contribution from end-bearing should be ignored.
- The piles should be spaced a minimum of three pile diameters, measured center to center.
- The weight of the embedded portion of the pile may be neglected in the design.
- All piles should be provided with adequate steel reinforcement.
- Concrete should be placed as soon as practical following the drilling of each pile.
- Seepage and sloughing can be expected in pile holes, particularly during wetter times of the year. As such, steel sleeves should be made available on site and utilized as required during construction to maintain the pile holes in a clean dry state.

3.3 Foundation Concrete

All concrete in contact with soils should be made using sulphate resistant cement (TYPE HS) in accordance with CSA-23.1-M2004.

Please contact the undersigned if you have any questions or require further clarifications.

Sincerely,

Prepared By:

Reviewed By:

OUNSA

Omer Eissa, B.Eng., E.I.T. Engineer-In-Training

Faris Khalil, P.Eng., PMP, M.Sc. Manager, Geotechnical Engineering

Attachments: Test Hole Location Plan Test Hole Log

AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

		_			UMA	USCS			Laborator	y Classification Crite	eria	
		Descr	ption		Log Symbols	Classification	Fines (%)	5	Grading	Plasticity	Notes	
		CLEAN GRAVELS	Well grade sandy grave or no	ed gravels, els, with little fines	22	GW	0-5		C _U > 4 1 < C _C < 3			
	GRAVEL (More that 50% of	S (Little or n in fines)	Poorly grad sandy grave or no	led gravels, els, with little fines		GP	0-5		Not satisfying GW requirements		Dual symbols if 5-	
OILS	GRAVELS (More than 50% of coarse fraction of gravel size) SANDS (More than 50% of coarse fraction of sand size) SILTS (Below 'A' line	of DIRTY GRAVELS	Silty gravels gra	s, silty sandy vels		GM	> 12			Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and	
AINED SC		(With som fines)	e Clayey gra sandy	vels, clayey gravels		GC	> 12			Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>	
ARSE GR	SANDS (More than 50% of coarse fraction of sand size)	CLEAN SANDS	Well grad gravelly san or no	ed sands, ds, with little fines		SW	0-5		C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$	
COP		(Little or n fines)	Poorly gra gravelly san or no	ded sands, ds, with little fines	000	SP	0-5		Not satisfying SW requirements		$C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$	
		of e) DIRTY SANDS	Silty s sand-silt	ands, mixtures		SM	> 12			Atterberg limits below "A" line or W _P <4		
		(With some fines) Clayey sands, sand-clay mixtures		sands, mixtures		SC	> 12			Atterberg limits above "A" line or W _P <7		
	SILTS (Below ' line	, W _L <50	Inorganic s clayey fine slight p	ilts, silty or sands, with lasticity		ML						
	SILTS (Below 'A' line negligible organic content)	e W _L >50	W _L >50 Inorganic silts of high plasticity			МН						
SOILS	CLAYS	W _L <30 CLAYS		LAYS WL<30 Inorganic clays, silty clays, sandy clays of low plasticity, lean clays			CL					
GRAINED	(Above) line negligibl organic	a ∋ 30 <w∟<50< td=""><td>Inorganic cl clays of plas</td><td colspan="2">Inorganic clays and silty clays of medium plasticity</td><td>CI</td><td></td><td></td><td></td><td>Classification is Based upon Plasticity Chart</td><td></td></w∟<50<>	Inorganic cl clays of plas	Inorganic clays and silty clays of medium plasticity		CI				Classification is Based upon Plasticity Chart		
FINE (content	W _L >50	Inorganic c plasticity	lays of high fat clays	\mathbb{Z}	СН						
	ORGAN SILTS &	C W _L <50	Organic organic silty plas	silts and clays of low ticity		OL						
	(Below ' line)	^{∧'} W _L >50	Organic cl plas	ays of high ticity	11	ОН						
H		GAINIC SOILS	Peat and organ	other highly c soils		Pt	Cla	Vor assific	n Post cation Limit	Strong colour o fibrou	r odour, and often s texture	
		Asphalt			Till							
		Concrete		E (Undi	Bedrock fferentiated)					AE	COM	
×	\bigotimes	Fill		E (Li	Bedrock mestone)							

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

- qu undrained shear strength (kPa) derived from unconfined compression testing.
- T_v undrained shear strength (kPa) measured using a torvane
- pp undrained shear strength (kPa) measured using a pocket penetrometer.
- L_v undrained shear strength (kPa) measured using a lab vane.
- F_v undrained shear strength (kPa) measured using a field vane.
- γ bulk unit weight (kN/m³).
- SPT Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.
- DPPT Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.
- w moisture content (W_L, W_P)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 - 50	medium or firm
50 - 100	stiff
100 - 200	very stiff
200	hard

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

	COMPACTNECC
N – BLOWS/0.30 M	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

PF	Roji	ECT:	Winnipeg Water Treatment Plant	CLIEN	IT: City of Winnipeg	g (Ea	rth T	ech Can Ltd)	TESTH	IOLE NO: 05-55	
		TION:	: Bridge Abutments - N 5523935.216 E - 648	12.076					PROJE	ECT NO.: 3398-055-0	0-01
		RACI	IOR: Maple Leaf Drilling	METH	OD: DR 150 - 125	mm	Solid	Stem Auger	ELEVA	TION (m): 237.591	
54	AMP				T SPOON	ULK			RECOVE	RY CORE	· · · · · ·
	DEPIH (m)	SOIL SYMBOL	SOIL DESCR	RIPTION		SAMPLE TYPE	SAMPLE #	△Pocket Pen. (kPa) 50 100 11 PLASTIC M.C. 20 40 6	(Su) ∆ 10 200 LIQUID 10 80	COMMENTS	ELEVATION (m)
- 0 - - - - - - - - - - - - - - - - - -			CLAY (FILL) - silty - brown - moist, firm to stiff - medium plasticity				516				237 -
-2			CLAY (TOPSOIL) - silty, black, moist, stiff, medium plas CLAY - silty, trace silt inclusions(<30mm diam.), trace - mottled light brown and grey - moist, stiff, high plasticity	ticity, trace organics xidation			510				236 -
-3			- grey, brownish, no silt inclusions, trace sulphur i	nclusions (<3mm diam	.) below 3.8 m		517	•			234 -
							518				233 -
3DT 8/24/05							519	A. •			232
MENT PLANT.GPJ UMA.(- grey, firm below 6.7 m				520 Z	X			230 -
INIPEG WATER TREAT			- no sulphur inclusions below 9.1 m		- -		521				229
ESTHOLE WIN							. . .				228
6					LOGGED BY:	Kate I	Frank	in	COMPLE	TION DEPTH: 21.79 m	
90			SHOW THE OWN		PRO.IFCT FNG	INFF	R K	en Skafffeld	COMPLE	HUN DATE: 8/22/05	1 of 2
-					LINGELLIENG		N	un unditielu		Page	1013

an ann an 1970 an 1970 ann an 1970 an 1

PROJECT: Winnipeg Water Tre	atment Plant	CLIENT: City of	Winnipeg	ı (Ea	rth T	ech Can Ltd)	TESTH	OLE NO: 05-55	
LOCATION: Bridge Abutments -	N 5523935.216 E - 648112.076	T				•	PROJE	ECT NO.: 3398-055-0	0-01
CONTRACTOR: Maple Leaf Dri		METHOD: DR 1	50 - 125	mm	Solid	Stem Auger	ELEVA	TION (m): 237.591	
		SPLIT SPOON	B	ULK			RECOVE		1
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION	N		SAMPLE TYPE	SAMPLE #	△ Pocket Pen. (kPa) 50 100 15 PLASTIC M.C.	(Su) ∆ 10 200 LIQUID 0 80	COMMENTS	ELEVATION (m)
-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					529	•			217
END OF TEST HOLE AT Notes: 1. Power auger refusal a 2. Water level at 12.8 m 3. Slouching to approxim	T 21.8 m IN SILT TILL. t 21.8 m. at completion of drilling. active 19 0 m at completion of drilling								216
-23	ite pellets.								21
-24									21
-25									21
-27							· · · · · · · · · · · · · · · · · · ·		21
-28			-						210
-29									209
30		1							208
UMA	AECOM	LOG REV	GED BY: A EWED BY:	(ate Nel	Frank son F	lin erreira en Skafffeld	COMPLE	TION DEPTH: 21.79 m TION DATE: 8/22/05	3 of

. L

a second s

•

PRO.	JECT:	Winnipeg Water Treatment Plant	CLIENT: City of Winn	ipeg (Ea	arth 1	Fech Can Ltd)	TESTH	IOLE NO: 05-57	
LOC	ATION	: Access Roads - N 5523912.595 E 648362.023	·				PROJE	CT NO.: 3398-055-00	0-01
CON	TRAC	TOR: Maple Leaf Drilling	METHOD: DR 150 - 1	<u>125 mm</u>	Solio	d Stem Auger	ELEVA	TION (m): 237.086	
SAM	PLE T	YPE GRAB IIISHELBY TUBE	SPLIT SPOON	BULK			RECOVE	RY CORE	1
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	J	SAMPLE TYPE	SAMPLE #	△ Pocket Pen. (kPa) 50 100 15 PLASTIC M.C. 20 40 6/	(Su) ∆ 0 200 LIQUID 	COMMENTS	ELEVATION (m)
- 0	VANA A	GRAVEL (FILL) 20 mm down limestone - light brown, dry, sub angular to angular			G-496	•			237 -
-	44	SAND (FILL) - trace gravel							-
-		- dark brown - very dense, moist							-
ŀ	~~	- rounded							-
F	~~							•	-
F	**							-	-
F					G-49	" P			-
F									-
F	44	- brown, moist to wet below 0.9 m					•••••		-
-1	44								224
Ē	44								230-
Ē	~~				C 40		····· :		
	* *				G-490	°			-
	44								-
		CLAY (FILL)- silty, trace sand, trace gravel							-
		- stiff, moist				····			-
-		- low to intermediate plasticity							-
-					G-49				-
-2		CLAY - silty							-
-		- brown - very stiff moist							235 -
F		- medium plasticity							-
F		- trace silt inclusions					·····		-
-									-
2/6/0					G-50				-
5									-
AA.G									
5									-
19. 19. 19.					G-50 ⁻				-
PLAN		END OF TEST HOLE AT 3.0 m IN CLAY					•••••		234 -
ENT		1. No seepage or sloughing							-
ATN									-
R TR									-
I ATE									
> 9-									-
UNN-									-
								-	-
1 IHOL									-
TES-	1		LOGGED	BY: Kat	e Frar	nklin	COMPL	ETION DEPTH: 3.05 m	
G OF		UMA AECOM	REVIEWE	D BY:			COMPL	ETION DATE: 8/12/05	
Ŏ		1	PROJECT	ENGINE	ER:	Ken Skaftfeld		Page	1 of 1

PRO.	JECT:	Winnipeg Water Treatment Plant	C	LIEN	IT: C	ity of Winnipeg (Earth T	ech Can Ltd)	TESTH	IOLE NO: 05-58	
LOCA	TION	: East Side of PR 207 South of Aqueduct Crossing - N	552	3977.	7 E	648427.5		PROJE	ECT NO.: 3398-055-0	0-01
CON					OD:	Acker SS, 125 mm SSA	<u>م</u>		TION (m): 237.55	
SAIVIE				JSPLI	T SPC			RECOVE		1
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	(kPa) 50 200 ■ Total Unit Wt ■ (kN/m²) (kN/m²) 17 19 21 23 ◆ SPT (Standard Pen Test) ◆ (Blows/300mm) 20 40 60 80 PLASTIC M.C. LIQUID 1 1 1 1 1 20 40 60 80	× QU (Su (kPa) 50 100 11 + Torvane (3 (kPa) 50 100 11 □ Lab Vane ((kPa) 50 00 11)× 30 200 30)+ 30 200 50)□ 30 200	COMMENTS	ELEVATION (m)
Ē		SAND (FILL) - trace gravel, frozen, poorly graded, fine grained / CLAY (FILL) - trace silt, trace gravel	1							237 -
-1 -2		- dark brown - dry, very stiff - high plasticity		G661		• 🔺				236 -
	\bigotimes	CLAY		C662						235 -
4		- brown - dry to moist, very stiff - high plasticity		T663			: X:++			234 -
5		- trace sitt inclusions (<3 mm dia.) - trace oxidized silt inclusions below 3.1 m		0004						233 -
E.e		- stiff below 3.1 m - silt layer (<3 mm thick) at 3.7 m		CEE						232 -
-7		 - firm below 4.3 m - dark grey, moist, trace silt inclusions (<3 mm dia.) below 4.9 m 		6005						231 -
E-8				G666			+			230 -
Ē,										229 -
10				G667 T668			ж + т]		228 -
E ₁₁		- trace gravel, some silt inclusions (<3 mm dia.) below 10.7 m		G669						227 -
-12				G670						226 -
E_13		- soπ below 12.2 m								225 -
14				G671		<u>^</u>	•			224 -
-15				0070						223 -
16		- very soft and silty with some gravel below 15.2 m	Ш	G672 T673		44	- 1Ж []			222 -
<u>الم</u>		· ·		G674		•	+		e	221 -
	99	CLAY (TILL) - silty, some gravel to gravelly, trace sand	$\left \right $							220 -
		 light grey moist, very soft, low to medium plastic 		G675	11					040
19 19		SILT (TILL) - gravelly, some clay, trace sand	h	20/6	11	X				219 -
		- damp to moist, stiff		G677						218 -
	Ы.	- damp, dense with cobbles below 19.8 m	M	5678	44	47				217 -
E-21		END OF TEST HOLE AT 20.7 m IN SILT TILL. Notes:					····			
1 22		1. Power auger refusal at 20.7 m.								216 -
1 2 2 2 3		3. Test hole backfilled to surface with bentonite chips and auger								215 -
										214 -
-24										040
25										213 -
26						<u></u>		<u></u>		212 -
-						LOGGED BY: Andrea Ha	chkowski	COMPLETION DEPTH: 20.73 m		
3		UMA AECOM				PROJECT ENGINEER K	erreira	COMPLE	HUNDATE: 1/18/06 Page	1 of 1

•

PROJECT: Winnipeg Water Treatment Plant			IT: City of Winnipeg (Earth Tech Can Ltd) TESTHOLE NO: 05-59	TESTHOLE NO: 05-59	
LOUATION: East State of P.K. 207 North of Aqueduct Crossing - N &		TOR: Paddock Drilling I td	2.1 E 040421.2 PROJECT NO.: 3398-055-00	PROJECT NO.: 3398-055-00-01	
SVVE			10D: Acker SS, 125 mm SSA ELEVATION (m): 237.6		
SAIVI					
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	$\begin{array}{c c} \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	EI EVATION (m)	
0 -1		CLAY (FILL) - trace silt inclusions, trace gravel, trace organics - dark brown - dry, very stiff		23	
-2	\mathbb{P}	- high plasticity \TOPSOIL (Clay) - 25 mm thick CLAY		23	
-3		- brown - moist, firm to stiff - high plasticity	G680 T681	23	
·4 ·5		- some oxidized silt inclusions - some silt lenses (<3 mm dia.) below 3.1 m dark grou meint trace silt inclusions (<2 mm dia.) below 4.0 m	G682	23	
6		୍ର ପର୍ବାନ କ୍ରାଟ୍ୟ, ମାରାର, ଏବଟେ ରାମ୍ବାରମହାର (୦୦ ମାମା ପାର.) DEIOW 4.9 M	G683	23	
7			G684	23	
8				23	
9 10				22	
11			— 6687 <u>∧</u> +	22	
12		- very moist, very soft below 12.2 m	G688	22	
13			G689	22	
14 15		- trace gravel below 13.7 m		22	
16				22	
17	0.0	SILT (TILL) - gravely some day trace sand	G692	22	
18 19	00000 0000	- light grey - damp to moist, stiff - low plasticity	S693 15 €	22 21	
20	dyd.	END OF TEST HOLE AT 19.5 m IN SILT TILL. Notes:		21	
21		 Power auger refusal at 19.5 m. No seepage or sloughing observed during drilling. Test hole backfilled with auger cuttings and bentonite chips upon completion 	n.	21	
22		· · · ·		21	
23 24				21	
25				21	
26				21	
			LOGGED BY: Andrea Hachkowski COMPLETION DEPTH: 19.51 m		
		UMA ALCOM	REVIEWED BY: Nelson Ferreira COMPLETION DATE: 1/18/06	<u> </u>	

+++++++ JAKATHI HAHAHAHAHAHAHAHA Hydro Tower East _____ Aqueduct Cressine A HANNAL Ľ Aqueduct-Schaller Hole) 7 Proposed Aqueduct Crossing (5 A C \odot

Figure Ol: Test Hole Location Plan

